On the nature of Thermal Diffusion in binary Lennard-Jones liquids
نویسندگان
چکیده
The aim of this study is to understand deeper the thermal diffusion transport process (Ludwig-Soret effect) at the microscopic level. For that purpose, the recently developed reverse nonequilibrium molecular dynamics method was used to calculate Soret coefficients of various systems in a systematic fashion. We studied binary Lennard-Jones (LJ) fluids near the triple point (of one of the components) in which we separately changed the ratio of one of the LJ parameters mass, atomic diameter and interaction strength while keeping all other parameters fixed and identical. We observed that the magnitude of the Soret coefficient depends on all three ratios. Concerning its sign we found that heavier species, smaller species and species with higher interaction strengths tend to accumulate in the cold region whereas the other ones (lighter, bigger or weaker bound) migrate to the hot region of our simulation cell. Additionally, the superposition of the influence of the various parameters was investigated as well as more realistic mixtures. We found that in the experimentally relevant parameter range the contributions are nearly additive and that the mass ratio often is the dominating factor. corresponding author
منابع مشابه
Diffusive Dynamicsof Binary Lennard-Jones Liquid in the Presence of Gold Nanoparticle: A Mode Coupling Theory Analysis
Molecular dynamics simulation has been performed to analyze the effect of the presence of gold nanoparticle on dynamics of Kob-Anderson binary Lennard-Jones (BLJ) mixture upon supercooling within the framework of the mode coupling theory of the dynamic glass transition. The presence of gold nanoparticle has a direct effect on the liquid structure and causes the peaks of the radial distribution ...
متن کاملDiffusion time-scale invariance, randomization processes, and memory effects in Lennard-Jones liquids.
We report the results of calculation of diffusion coefficients for Lennard-Jones liquids, based on the idea of time-scale invariance of relaxation processes in liquids. The results were compared with the molecular dynamics data for the Lennard-Jones system and a good agreement of our theory with these data over a wide range of densities and temperatures was obtained. By calculations of the non-...
متن کاملThermal Diffusion in Lennard-jones Fluids in the Frame of the Law of the Corresponding States
This work is related to the definition of a reduced thermal diffusion coefficient thanks to numerical microscale molecular dynamics simulations. This cross transport process, also called Soret effect, couples mass flux and thermal gradient and is still largely misunderstood. For this study, we have applied a boundary driven non equilibrium molecular dynamics algorithm on Lennard-Jones spheres m...
متن کاملPredicting the effective temperature of a glass.
We explain the findings by Di Leonardo et al. [Phys. Rev. Lett. 84, 6054 (2000)10.1103/PhysRevLett.84.6054] that the effective temperature of a Lennard-Jones glass depends only on the final density in the volume and/or temperature jump that produces the glass. This is not only a property of the Lennard-Jones liquid, but a feature of all strongly correlating liquids. For such liquids data from a...
متن کاملCalculation of Thermodynamic properties of Fluid Using a New Equation of State
Using the Lennard-Jones (12-6) potential, a new equation of state is obtained that can predict properties of both gases and liquids relatively well. This equation of state is given as (Z-a)V2=(A/V2)-B, where Z is the compressibility factor, A and B are constants, and a is an adjustable parameter that depends on the temperature, volume and the nature of the fluid, and i...
متن کامل